Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hiroyuki Ishida

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail:
ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=302 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.103$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(3-methylpyrazolium) chloranilate

In the title compound, bis(3-methyl-2H-pyrazol-1-ium) 2,5-dichloro-3,6-dioxido-1,4-benzoquinone, $2 \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{2-}$, the chloranilate and 3-methylpyrazolium ions are held together by bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, giving a centrosymmetric chloranilate-3-methylpyrazolium 1:2 unit. The 1:2 units are connected to each other by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a molecular ladder.

Comment

The title compound, (I), was prepared in order to extend our study on $D-\mathrm{H} \cdots A$ hydrogen bonding $(D=\mathrm{N}, \mathrm{O}$, or $\mathrm{C} ; A=\mathrm{N}$, O, Cl) in the chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone)-amine 1:2 system. Crystal structures have been analyzed for 1:2 complexes of pyridazine, pyrimidine, pyrazine (Ishida \& Kashino, 1999a,b), pyrazole, imidazole (Ishida \& Kashino, 2001), toluidine (Fukunaga et al., 2003), pyrrolidine (Ishida, 2004a) and 2,4,6-trimethylpyridine (Ishida, 2004b).

(I)

In (I), the chloranilate ion shows a characteristic structure, having four short $\mathrm{C}-\mathrm{C}$ bonds and two extremely long $\mathrm{C}-\mathrm{C}$

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of (I), with the atom labeling, showing the formation of a molecular ladder along the b axis. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines (symmetry codes are as given in Table 2).

Received 22 November 2004 Accepted 23 November 2004 Online 30 November 2004

Figure 2
Packing diagram, showing molecular ladders connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (shown as dotted lines). $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown by dashed lines.
bonds (Table 1), which is explainable in terms of the double π system of the anion (Andersen, 1967; Benchekroun \& Savariault, 1995). The chloranilate and 3-methylpyrazolium ions are held together by asymmetric bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to give a centrosymmetric chloranilate-3methylpyrazolium 1:2 unit. The dihedral angle between the planes of the chloranilate ring and the pyridine ring is $69.92(15)^{\circ}$. The $1: 2$ units are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a molecular ladder running parallel to the b axis (Fig. 1), similar to that found in the pyrazole salt. Neighboring ladders are connected to each other by C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2).

Experimental

Crystals were obtained by slow evaporation of an acetonitrile solution of chloranilic acid with 3-methylpyrazole in a 1:2 molar ratio.

Crystal data

$$
\begin{array}{ll}
2 \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} . \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{O}_{4}{ }^{-} & D_{x}=1.570 \mathrm{Mg} \mathrm{~m}^{-3} \\
M_{r}=373.19 & \text { Mo K } \alpha \text { radiation } \\
\text { Monoclinic, } P 2_{1} / c & \text { Cell parameters from } 25 \\
a=8.9885(15) \AA & \text { reflections } \\
b=5.7445(12) \AA & \theta=11.0-12.5^{\circ} \\
c=15.471(3) \AA & \mu=0.44 \mathrm{~mm}^{-1} \\
\beta=98.749(15)^{\circ} & T=302 \mathrm{~K} \\
V=789.5(3) \AA^{3} & \text { Prism, dark violet } \\
Z=2 & 0.20 \times 0.20 \times 0.20 \mathrm{~mm}
\end{array}
$$

Data collection
Rigaku AFC-5R diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.891, T_{\text {max }}=0.917$
2566 measured reflections
1807 independent reflections
1142 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.103$
$S=1.04$
1807 reflections
118 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& R_{\mathrm{int}}=0.032 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-1 \rightarrow 11 \\
& k=-1 \rightarrow 7 \\
& l=-20 \rightarrow 20 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 0.7 \% \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.034 P)^{2}\right. \\
& \quad+0.238 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{C}-\mathrm{C} 2$	$1.742(3)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.339(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.251(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.402(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.252(3)$	$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.540(4)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.317(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.389(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.346(3)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.471(4)$

Symmetry code: (i) $1-x, 2-y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.91(4)$	$1.75(4)$	$2.651(3)$	$175(4)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.91(4)$	$2.55(4)$	$2.970(3)$	$109(3)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {ii }}$	$0.92(3)$	$1.81(3)$	$2.717(3)$	$168(3)$
$\mathrm{C} 6-\mathrm{H} 4 \cdots \mathrm{O}^{\text {iii }}$	0.93	2.36	$3.261(3)$	164
Symmetry codes: (i) $1-x, 2-y, 1-z \cdot$ (ii) $1-x, 1-y .1-z \cdot$ (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$				

H atoms attached to N atoms were refined isotropically. Methyl H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and refined as riding, with free rotation about the $\mathrm{C}-\mathrm{C}$ bond. $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\mathrm{eq}}(\mathrm{C})$. Aromatic H atoms were also treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (MSC, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

X-ray measurements were made at the X-ray Laboratory of Okayama University. This work was supported by a Grant-inAid for Scientific Research (C) (No. 16550014) from the Ministry of Education, Science, Sports and Culture of Japan.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

organic papers

Andersen, E. K. (1967). Acta Cryst. 22, 196-201.
Benchekroun, R. \& Savariault, J.-M. (1995). Acta Cryst. C51, 186-188.
Fukunaga, T., Kumagae, N. \& Ishida, H. (2003). Z. Naturforsch. Teil A, 58, 631-637.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ishida, H. (2004a). Acta Cryst. E60, o974-o976.
Ishida, H. (2004b). Acta Cryst. E60, o2005-o2006.
Ishida, H. \& Kashino, S. (1999a). Acta Cryst. C55, 1149-1152.
Ishida, H. \& Kashino, S. (1999b). Acta Cryst. C55, 1714-1717.
Ishida, H. \& Kashino, S. (2001). Acta Cryst. C57, 476-479.

Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation. (1997-1999). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

